
I S R A E L  J O U R N A L  O F  M A T H E M A T I C S  156  (2006), 221-241 

TWO TO ONE IMAGES AND PFA 

BY 

ALAN DOW* 

Department of Mathematics, UNC-Charlotte 

9201 University City Blvd., Charlotte, N C  28223-0001, USA 

e-mail: adow@unce.edu 

U R L : h ttp : ////www. math. un ce. edu // ~ adow 

ABSTRACT 

We prove that all maps on N* that are exactly two to one are trivial if 

PFA is assumed. 

1. I n t r o d u c t i o n  

A map f :  X ~ K is precisely two to one if for each k C K,  there are exactly two 

points of X that  map to k. For the remainder of the paper we are assuming that  

f is a precisely two to one mapping from N* onto some (compact) space K.  The 

question of whether there are non-trivial two to one maps on N* is motivated 

by the papers of van Douwen [vO93] and R. Levy [Lev04]. In particular, Levy 

asks if every two to one image of N* is homeomorphic to N*. In fact there 

are several questions in [Lev04] that  are consistently answered by the results in 

this paper. The behavior of two to one maps on N* when CH is assumed is 

investigated in [DT04]. It is well known that  van Douwen has shown in [vD93] 

that  there is a compact separable space which is a <2 to one image of N* and 

this pathology motivates the current study. R. Levy showed that  if f is precisely 

two to one on N* then K will have weight equal to r and countable discrete 

subsets of K will have closure homeomorphic to ~N.  

In the two to one mapping context, it is natural to say that  a mapping g 

from X to K is t r iv i a l  if there are disjoint clopen subsets A, B of X such that  

g[A] = g[B] = K.  

* This article was considerably improved by the careful referee's reports. 
Supported by NSF grant DMS-0103985. 
Received September 9, 2004 and in revised form June 28, 2005 

221 



222 A. DOW Isr. J. Math. 

PROPOSITION 1: If f is locally one to one (every point has a neighborhood 

on which f is one to one), then N can be partitioned into a U b such that 

f[a*] -- f[b*] = K.  Since f is two to one, f is then a homeomorphism on each 

of a* and b*. 

Proof." If each point of N* has a neighborhood on which f is one to one, then 

there is a finite cover by such neighborhoods. Let .4 be a finite partition of 

N s u c h t h a t  f is one to one on each a* E .4 .  Enumerate . 4 =  {hi : i _<  n}. 

We will use induction on n. Consider the compact set B0 = f - l ( f[a~])  \ a~ 

and note that  f[B0] -- fiat]. Since f is two to one, S[Bo n all is disjoint from 

f [Ul<j  a~]. Therefore there is a Cl C al such that  B0 n a~ C c~ and f[cl] also 

disjoint from f [Ul<j  a;]. Since f is precisely two to one, and is one to one on 

c~, it follows that  f[cl] C f[a~]. That is, we have shown that  B0 n a l  = c~. The 

same argument applies for each i > 0 replacing 1, hence B0 is equal to b~ for 

some infinite b0 C N \ a0. It follows that  the restriction of f to the union of 

{(hi \ b0)*, (a2 \ b0)*,. . . ,  (an \ b0)*} is precisely two to one and is one to one on 

each piece. I 

The statements of PFA, OCA, MA and MA(wl) can be found in [Tod89] and 

some familiarity will be assumed. Basic information about N* can be found in 

[Wal74]. Of course it is well known (see [Vel93]) that  OCA and MA implies that  

the mapping f -1  o f from a* to b* in the above proposition will actually be a 

trivial mapping. For a function f ,  we will use f(-) when the function is applied 

to a member of its domain and S[.] when we applying to a set of elements from 

the domain. 

Definition 2: Let f f  be the collection of those sets a E [w] ~ such that,  on a*, f 

is precisely two to one and locally one to one. Let ff~ denote the ideal generated 

byJ.  

PROPOSITION 3: If  ao, al are disjoint infinite subsets of N and f is one to one 

on each of a~ and a~, then f[a~] n fiat] is clopen in K and is equal to f[c*] for 

some c C ao U al in J .  

Proof: Set A = N \ (a0 U hi) and note that f[A*] is disjoint from f[a~] n fiat] 
by the two to one property of f .  Thefore K \ f[A*] is open and is easily seen to 

be equal to the closed set f[a~] n fiat]. Therefore there is an c C g such that 
c* = f - l ( u )  where U is the clopen set f[a~] n fiat]. It is now routine to verify 

that c is as required since f[c*] -- f[(a0 Nc)*] = f[(al  nc)*] and f is two to one. 

t 
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PROPOSITION 4 (OCA + MA): For each a E J ,  there will be a permutation ha 

on some cofinite subset of a such that ha is never the identity, h2a is the identity, 

and for each b C a, f[b*] = f[ha[b]*] and is cloven. 

Proof: By Proposition 1, a can be partitioned as a0Ual such that  f[a~] = f[a~]. 

It follows easily that  f - 1  o f restricts to a homeomorphism from a; to a~. By 

OCA and MA, this is a trivial homeomorphism and ha is the witness together 

with its inverse (with possibly finitely many elements of a removed). For each 

b C a, each of f[(b C~ a0)*] = f[(h(b C~ ao) )*] and f[(b N al)*] = f[(h(b N al) )*] 
are clopen by Proposition 3. | 

Naturally the task is to prove that  J does not generate a proper ideal. The 

first step is to prove that  ,7 is not empty. We will proceed by first showing 

that if f is not locally one to one, then there is a point x such that for every 

countable family {An : n E co} C x, there is an A E J such that  A is almost 

contained in each An. 

There are two main results. The first is Lemma 17 which is critical to 

establishing that  such an x exists. The second, Theorem 25, is to show that  

this leads to a contradiction. 

We will certainly need the following results from [FarO0]. 

Definition 5 [FarO0, 3.3.2]: An ideal g C p(N) is ccc over fin, if there is no 

uncountable family of almost disjoint subsets of N such that  none are in Z. 

The following are consequences of OCA and MA (and therefore of PFA). 

PROPOSITION 6 ((OCA + 1VIA) [FarO0, 3.8.2]): If  ~5: p ( N ) / f i n  ~ p ( N ) / f i n  

is a homomorphism, then there is an A C N and an h: A -* N such that 

{a C N :  q~(a) = h- l (a )}  is ccc over fin. 

It will be useful to state the topological dual (a similar but slightly weaker 

formulation was given in [FarO0, 3.5.5]). The kernel of �9 will form an ideal of 

subsets of N and so the closures of the complements will intersect to a closed 

set K C N*. Therefore ~5-1 will induce an isomorphism from a subalgebra of 

p ( N ) / f i n  to the cloven subsets of K. A closed set F C N* will be said to be 

ccc over fin if there is no uncountable family of pairwise disjoint clopen subsets 

of N* each meeting F. A closed set which is ccc over fin will be nowhere dense 

in N*. 

PROPOSITION 7 (OCA + MA): I f  H is a continuous mapping from N* onto 

a subset K of  N*, then there is an A c N and a function h: A --* N so that 

H[A*] is cloven, H [ A* = flh F A*, and H[(N \ A)*] is ccc over fin. 



224 A. bOW Isr. J. Math. 

COROLLARY 8 (OCA + MA): / f a  nowhere dense set T of N* is homeomorphic 
to N*, then there does not exist an uncountable family of pairwise disjoint 
clopen subsets of N* each of which meets T. 

2. Basic properties of f and K 

We will have to show that  K is nowhere ccc (a space is said to be nowhere 

ccc if no non-empty open subset is ccc). Fix any closed subset Z of N* such 

that  f restricted to Z is irreducible (meaning no proper closed subset of Z will 

map onto). 

LEMMA 9 (MA): The set f[N* \ Z] is dense in K. 

Proof'. Let W be a non-empty open subset of K and assume, for a contradic- 

tion, that  W N f[N* \ Z] is empty. Therefore, f - l ( w )  is contained in Z. Let 

U be a non-empty clopen subset of Z such that  U c f - l ( w ) .  Since f I Z is 

irreducible, Ja -- a M f - l ( f [ Z -  a]) is nowhere dense in Z for each a clopen in Z. 

Also, g \ f[Z \ U] is a non-empty open subset of K,  hence there is a b0 C [N] ~ 

such that  f[b~] C K \ f[Z \ U]. Since we are assuming f - l ( f [V])  C Z, we 

have that  f-l(f[b~]) C_ U. Let {ba : c~ �9 c} enumerate [b0] ~. For each c~ �9 c, 

J~ = Jb~ is a nowhere dense subset of b~. By Martin's Axiom, it is routine to 

inductively choose a sequence {d~ : a < c} C [b0] ~, descending mod finite, so 

that  d* M Ja = 0 for each c~ < c. Therefore there is a point x �9 b; such that  

x ~ U{J~ : c~ �9 c}. Since f is precisely two to one, there is a point x'  # x such 

that  f(x')  = f(x). Since x' # x, there is an c~ ~ c such that  x �9 b* and x' ~ b*. 

Since x ~ J~, it follows that  x' r Z \ b* contradicting that  f-l(f[b;]) C Z. 
t 

LEMMA 10 (MA): For each a C [w] ~, there is a b E [a] ~ such that f F b* is one 

to one. 

Proof." Since f is two to one, it will suffice to find a b E [a] ~ so that  K = 

f[(N \ b)*]. If a* is not contained in Z, let b C a be such that  b* M Z = 0. Since 

(N \ b)* ~ Z and f[Z] = K, it follows that  g = f [ (g  \ b)*]. 

Otherwise we have that  a* C Z. In this case, (N \ a)* ~ N* \ Z. By Lemma 

9, f[(N \ a)*] will contain a dense subset of K and, being compact, will contain 

K.  I 
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LEMMA 11 (MA): I f  f [ b* is one to one, b E [N] ~, then the interior off[b*] is 

equal to the union of  clopen sets of the form f [c*] for c C `7 and c* C f- l( f[b*]).  

Proof: Let b be as in the hypothesis of the Lemma and let y be in the interior 

of f[b*]. Since f is one to one on b*, there is an x E (N\b)*  such that  f ( x )  = y. 

By continuity, there is an al ,  disjoint from b such that  f[a~] is contained in 

f[b*]. If we let a0 = b, then the Lemma now follows by Proposition 3. I 

For b C N, let f+b denote the mapping f I b* and f -b  = f r (N \ b)*. 

LEMMA 12: I f  f is one to one on b*, then gb = f--~ o f+b is an embedding orb* 
into (N \ b)*. I f  gb[b*] has some interior, say c*, then c U b contains a member 

of J .  

Proof: It clearly follows from the two to one assumption on f that  gb is an 

embedding. If c C N \ b is such that  c* is contained in gb[b*], then f is one to 

one on each of c* and b*. Proposition 3 implies that  c U b contains some member 

of `7 (in fact c will be in .7'). I 

PROPOSITION 13 (OCA + MA): I f  S is one to one on b*, then b can be parti- 

tioned into two, bo and b,, such that f[b~] is clopen and f[b~] is nowhere dense. 

Proof: Again let gb denote the embedding of b* into (N\b)* given by f - ~  of+b. 
By Proposition 7, there is c C N \ b  such that  c* C gb[b*] and gb[b*]\c* is nowhere 

dense. There are b0 C b such that  gb[b~] = c* and 51 = b \ b~) will satisfy gb[b~] 

is nowhere dense. It follows that  f[b;] = f[c*] and f[b;] = g \ f [ ( Y  \ (Do U c)*] 

is clopen. In addition, f[b~] is nowhere dense in K because gb[b~] is equal to 

f- l(f[b~])  and is nowhere dense in ( g  \ b)*. I 

Although we will not need this result until the next section, this still seems 

the most natural place to present it. 

PROPOSITION 14: Ira  E ,7 then there is a e E [a] ~ such that c* C Z and f[c*] 

is disjoint from f [Z  \ c*]. 

Proof: By Definition 2 and Proposition 1, a can be partitioned as a0 U al with 

f[a~] = f[a~]. Since f maps Z irreducibly onto K,  f[a*] is covered by f[a~ N Z] 

and f[a~ n Z], so assume a; N Z is not empty. Let W = g \ f [ Z  \ a~] C f[a~ n Z] 

and recall that  W is non-empty open since f F Z is irreducible. Choose any 

infinite c C a0 such that  f[c*] C W. Since f[a~] contains f[c*] and f[a~ n Z] is 

disjoint from f[c*], it follows that  f[c*] _C f[a~ \ Z] C_ f[a~ N Z]. Since f is one 
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to one on a~, we have that f[c*] is disjoint from f[(a0 \ c)*] and so c* C a~ n Z. 

Finally, since f[Z\c*] C_ f[Z\a~] Uf[(ao\c)*], we also have that  f[c*] is disjoint 

from f[Z \ c*]. I 

LEMMA 15 (MA): The space K is nowhere ccc. 

Proof." Observe that  if U, W are disjoint non-empty open subsets of Z, then 

K \ f[Z \ U] and K \ f[Z \ W] are disjoint non-empty open subsets of K.  

Therefore, it suffices to show that  Z is nowhere ccc. Let A C N and A* N Z r 0 

and assume that A* NZ is ccc. Since f[Z\A*] and f[A* NZ] meet in a nowhere 

dense subset of K,  there is a clopen subset b0 of A*N Z such that  f[b0] N f [Z\  A*] 

is empty. Since Z \ A* is compact, there is a clopen set B* of N* such that  

Z \ A* C B* and f[bo] n f[B*] is empty. 

Let B = {bs : a E r enumerate the collection of clopen subsets of b0. We 

may view b0 as the Stone space of the Boolean algebra {bs : a E c}. Fix an 

unbounded set C c r so that  for each A C C, {bs : a E A} is a subalgebra of 

B. Further, let {As : a E r enumerate all the infinite subsets of N with the 

property that  their closures are disjoint from Z. 

For each clopen subset a of bo, let Ja = aNf -l[f[Z\a]]. Since f is irreducible 

on Z, each Ja is nowhere dense in Z. Also let Ys = Z N A* n f-l[f[A*]] for 
$ each a �9 r Since f is one to one on A*, each of f[A*] and Z N f-l(f[Aa] ) are 

nowhere ccc. Since we are assuming that  Z n A* is ccc, it follows that  Ys is also 

nowhere dense in Z. 

We inductively define a family, {a n :/3 < c} of clopen subsets of A* n Z. Let 

a0 = b0. Our inductive hypotheses are that  for each a < r 

(1) {a n :/3 < a} has the finite intersection property; 

(2) a n is contained in one of {bz, bo \ bz}; 

(3) for each/3 + 1 < a, az+l is contained in a n \ (Ja~ U YZ). 

Suppose we have chosen the family {a n : /3 < a}. Let Zs C b0 denote the 

closed set n{a~ :/3 < a}. For each integer n, the selection of an is trivial, and 

since we are assuming that  a0 is ccc, we can assume that  a _> w and that  Zs 

is nowhere dense in Z. If a is a limit, then simply let as equal bs if bs meets 

Zs, otherwise set as = b0 \ bs. Otherwise, a is a successor and there is a 

such that  a = ~ + 1. We must avoid J ~  U Y~. It suffices to show that  Zs is 

not contained in J ~  U Y~ because then we can select as C a~ to meet Zs, miss 

Ja,  U Y$ and to be contained in one of {bs, bo \ bs}. 

For each ~/ < a, J ~  U Y~ U Zs is a nowhere dense subset of A* n Z. Since 

b0 C A* n Z is ccc, we may fix a countable family b/~ of clopen subsets of 
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bo so that  U/d~ is a dense open subset of b0 \ (J~, U Y~ U Zs). Since MA 

implies that  c is a regular cardinal, there is a As E C larger than c~ so that  

{a~} U b/~ C {be : ~ < ,~}  for each 3' < a. Let Bs be the Boolean subalgebra 

{be : ~ < As}. It follows that  there is a map g~ from b0 onto S(Bs),  the Stone 

space of Bs, such that  ggl(br = be for each ~ < ,~s. Let Fs  = gs[Z~]. It 

follows that  F~ is also equal to the intersection of the family {a~ : 7 < a}, but 

in the different Stone space of course. Our assumptions have guaranteed that  

Fs is nowhere dense in S(B~). 

Since B is ccc, so is Bs. In addition, Ba is of cardinality less than r thus 

it follows from MA that  Bs is a-centered and S(B~) is separable. Recall that  

= /5  + 1 and let Us denote the dense open subset of S(B~) which is generated 

by the family UB. By construction, ggl(U~) is disjoint from Zs. Let D be a 

countable dense subset of Us. The neighborhood filter of Fs  traces a filter on D 

which has a filter base of cardinality less than c. Since we are assuming Martin's 

Axiom, there is a countable set {Xn : n E co} C D which is mod finite contained 

in every member of that  filter base. In other words, the sequence {xn : n E co} 

converges to Fs.  For each n, let zn E Z A b0 be chosen so that  gs(z~) = x~. 
Note that  since xn E Us, we have ensured that  z~ r Ja,  U Y3 U Zs and all but 

finitely many are in a/~. Therefore all the limit points of {Zn : n E co} are in Zs. 

By passing to a subsequence, we can assume that  f(Zn) r f ( z~ )  for n < m. 

/ N *  For each n~ let z n E be distinct from z~ such that  f(z'~) = f(z,,).  Let 

T = f[Z~] which is a nowhere dense subset of K.  By construction, the image 

of {z~ : n E co} is contained in {f(Zn) : n E co} U T. Since K has no isolated 

points, and {f(z~) : n E co} is a relatively closed subset of Z \ T, it is discrete 

and nowhere dense. Since f maps {z~ : n E co} U {z~ : n E w} onto the discrete 

set {f(z~) : n E co} by a two to one map, {zn : n E co} U {z~ : n E co} is a 

discrete subset of N*. It follows that  {Zn : n E co} and {z~ : n E co} have 

disjoint closures and I[{zn :n  C co}] = f[{z~ : n  E co}]. 

Let x E Z be a limit point of {zn : n E co}, hence x E Zs. There is a limit 

point x t of {Z~n : n E co} such that  I (x)  = f(x ' ) .  Clearly x E a3 and we claim 

that  x q~ Ja~ U Y3. To show this it is sufficient (and necessary) to show that  

x ' i s n o t  in ( Z \ a B )  U A  5. For e a c h n ,  Zn q~ Y3' hence z~n ~ A 5. S inceA 5 is 

clopen and x' is a limit of {z~:  n E co} it follows that  x'  ~ A 5. The collection 

{z~ : n E co} N Z has all but finitely of its elements contained in aB, which is 

clopen in Z, hence none of the limit points are in Z \ a B. We will be finished 

if we show that  the closure of {z~:  n E I} = {Z~n : n E co} \ Z is disjoint from 

Z. Since {zn : n E w} is a nowhere dense subset of b0 and f[bo] is disjoint from 
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f[B*], f[{z'~ : n C w}] is a nowhere dense subset of K \ f[B*]. It follows now 

that  Z M { z '  n : n E w }  is anowhere  dense subset of Z \ B * .  Since Z \ B *  is 

ccc, there is a collection {cn : n E w} of clopen subsets of N* such that  each 

is disjoint from {z~ : n �9 w} and the union contains a dense subset of Z \ B*. 
! 

For each n �9 I,  let dn be a clopen subset of N* \ B* such that  z n �9 d,~ and 

dn g3 (Z U U{ck : k < n}) is empty. For each n �9 o;, shrink cn by removing 

U{dk : k ( n}; note that  this does not change cn M Z. Then we have that  

Unei dn and B* U U,~ Cn are disjoint, and as is well-known, they have disjoint 

closures in N*. Since the latter closure contains Z we have finished the proof. 

I 

3. Tree-l ike famil ies  

An embedding of N* into N* is said to be trivial, if the embedding lifts to an 

embedding of fiN into fiN. It is an open problem to determine if there can 

be a non-trivial embedding of N* into N* under OCA and MA (see [HvM90, 

Problem 219] and [FarO0, Question 3.14.2]). If there are none, then it is easy 

to show that  the set bl in Proposition 13 would be empty by using Levy's 

proof from [Lev04, 2.4] which shows that  the preimages of closures of countable 

discrete sets are again closures of countable discrete sets. The main result of 

this section is used as an alternative approach. 

The set of finite sequences {0, 1} <~ has a standard tree ordering by set inclu- 

sion. A family ,4 of subsets of N is said to be t ree- l ike  if there is an embedding 

T of N into {0, 1} <w such that  for each A C ,4, T[A] is contained in a single 

branch of {0, 1} <~, and distinct members of A are sent to distinct branches (see 

[FarO0, 3.12.2]). 

PROPOSITION 16 (MA(wl) [Ve193, 2.3]): Let ,4 be an uncountable almost dis- 

joint family of infinite subsets of N.  Then there is an uncountable I3 C A and 

for each a E B a partitition a = ao U al such that the family Bi = {ai : a E B} 

is tree-like for each i C {0, 1}. 

LEMMA 17 (OCA + MA): Suppose that {as : a C wl} is a tree-like family of 

subsets of N with the property for all a there is a b~ E [a~] ~ such that f(b* ) 

is disjoint from f [ ( N  \ aa)*]. Then there is an a such that, with b = b~, gb[b*] 

has interior. 

Proof." We may assume that  f is one to one on b~ by Lemma 10. For each 

c c aa define F(c) C ba as follows. Since f[(aa \ b~)*] contains f(b*) and f is 
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precisely two to one, there will be a subset F(c) of b~ such that  

f[F(c)*] = f(b*~) O f[(c \ ba)*]. 

The definition of F on p(aa) can also be expressed, as F(c)* is the clopen 

subset of b* = b~ which is equal to gbl[c * n gb(b*)]. 
It is easily seen that  F is a homomorphism from p(ac~)/fin onto p(b~)/fin. 

By Corollary 8, if we find some a and some uncountable family of pairwise 

disjoint clopen sets each of which meets gba [b*], then this copy of N* will not 

be nowhere dense. Equivalently, by Farah [FarO0] (Proposition 6), if for some a 

the kernel of F r p(a~) is not ccc over fin, then there is a c C am \ b~ such that  

F is a trivial isomorphism from p(c) to p(ba). We proceed as in [Ve193]. 

Let X denote the set of all pairs (c, d) such that  for some a, d C c C aa \ ba, 

and each of F(d) and F(c \ d) are not 0. 

We define a set K0 C [X] 2 according to {(c, d), (~, d/} E K0 providing 

(1) c C aa and ~ C as  implies c~ r 6; 

(2) c O F(~) and ~ N F(c) are empty; 

(3) c n d = ~ N d ;  

(4) F(c) N F(d) is not equal to F(~) n F(d). 
The appropriate separable metric topology on 2d (given by considering it as 

embedded in ~9(w) 4 by the mapping sending (c, d} to (c, d, F(c), F(d))) will result 

in Ko being an open subset of IX] 2 (see [Vel93]). 

Assume that  Y is an uncountable subset of X and that  [3;] 2 C K0. Let 

I C wl be the set of a such that  there is (c, d) C 3; such that  c C as. Also let 

(cc~,da} C Y be chosen for each a E I so that  ca c ha. Since [y]2 c K0 and y 

is uncountable, it follows that  I is uncountable. 

Let C = U{ca : a  e I} and D = U{da : a  e I}. Let (c,d) and <~,d) be an 

arbitrary distinct pair from 3;. Note that  c N (F(c) U F(~)) is empty. It follows 

that  C is disjoint from U{F(c) : (3d)(c,d) E Y}. Also, D N c will equal d for 

each (c, d) E Y. Hence (C \ D) N c = c \ d for each <c, d) E Y. 

Now consider the two families {F(da) : a C I} and {F(c,~ \ dc~) : a E I}. 
Assume that  E C w and that  ENF(c~)  =* F(da) for each a E I. Let n E w and 

I '  e [i]~1 such that  (ENF(ca))AF(dc~) is contained in n for all a �9 I'. Let a # 

both be in I ' .  We may assume that  F(ca)nn = F(cz)nn, F(d~)Nn = F(d~)Nn. 
Also, we may assume that  F(da) \ F(c,~) is contained in n for all (~ �9 I'. 

Since {(c~, d~), (c~, d~)} e K0, there is some j �9 F(c~) N F(d~) such that  

j ~ F(c~) N F(d,~). Clearly j must be larger than n. Since j �9 F(d~), it follows 

that  j �9 F(c~). Therefore j is in E. On the other hand, since j is in ENF(c~) ,  

it must follow that  j �9 F(dc~), contradicting that  j ~ F(cz) n F(da). 
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It follows then that there is no such E. This means that  U{F(d~)* : a C I} 

and U{F(c~ \d~)* : a C I} do not have disjoint closures in N*. Fix any x E N* 

which is in each of the closures. Notice that  x ~ C* since C is disjoint from 

F(c~) for all ~ C I. 

Since f[d*~] is equal to f[F(d~)*] and f[(c~ \ d~)*] = f[(F(c~ \ d~))*], it 

follows that  f ( x )  is in the image of the closure of U~cI d~ and of U~ci(c~ \d~)*. 

Therefore f ( x )  is in the image of D* and of (C \ D)*. However, this contradicts 

that  f ( x )  only has two points mapping to it as we have found points in D*, 
(C \ D)*, and (N \ C)*. 

Therefore by OCA, 2( can be expressed as a countable union Un Yn such that  

[Yn] 2 N K0 is empty for each n. For each n, there is a countable Yn C Yn such 

that  for each integer m and each (c, d) E Yn, there is some (~, d) E Yn such that  

c A m  = ~Nm,  d A m  = dAm,  F ( c ) N m  = F(~)Am,  and F ( d ) A m  = F ( d ) A m .  

Fix any a E a;1 such that  6Naa is finite for each (~, d) C U~ Yn. Construct an 

increasing sequence {kn : n E w} of integers so that  for each n and each i _< n 

and each sequence c p, d ,  a ~, b ~ of subsets of kn, if there is a (c, d) E Yi such that  

c n k~ = c', d N kn = d', F(c) n kn = a', and F(d) N k,~ = b', then there is a pair 

(c, d) E Y/ that  also has this property, and in addition, as n as C kn+l where 

c C  a~. 

Define Ei to be U{a~ N [k3n+i, k3n+i+l) : n  E w} for i G 3. There is an i E 3 

such that  F(Ei)  is not finite. There is a j C 3 such that  Ej N F(Ei)  is not 

finite. Fix any c C Ei such that  F(c) is infinite and is contained in Ej modulo 

finite. Let do, dl, d2 be a partition of c so that  F(d0), F(dl) ,  and F(d2) are each 

infinite. For simplicity we will assume that  { i , j }  = {1, 2}. Note that  for all 

x C dl, the pair (c, do U x) is a member of 2( (since c \ (do U x) contains d2) and 

we may assume that  (c U F(c)) N [k3m, k3,~+1) is empty for all n. 

It can now easily be shown that  F I ~o(dl) is "a-Borel" (see [Far00, p. 103]) 

which, in the case that  F is an isomorphism, was shown to imply F I p(dl) has a 

Borel representation ([Ve193, 2.2]) and would complete the proof by Proposition 

7. However, it is pointed out in [FarO0, p. 103] that  this is not sufficient in the 

case that  F is only a homomorphism as it is here. The proof of [FarO0, 3.12.1] 

certainly handles a very similar situation but is not directly applicable to ours. 

Therefore to finish the proof we will directly produce an uncountable family of 

b* clopen subsets of N* each of which will meet gb~ [ c~]" 

We construct an increasing sequence {rni : i C w} C {k3e : g G w} together 

with subsets t~ c d~ N [rni, mi+l) and possibly infinite sets {J~ : i E w} by 

induction. We can let m o =  0 and J - 1  ---~ 0. For each J C N, let D(J)  = 
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do U (dl N U{[k3j, kaj+3) : j E J}). 
Given that  mi and Ji-1 have been chosen we will construct the set ti 

also by a finite induction and will then choose mi+l.  Fix an enumeration 

{(ee,ne,n~) : g < L} of p(mi) x i x i. We will construct {t(i,g) : ~ < L} 

such that  t ( i+ l ,~ )Nmax( t ( i ,~ ) )+l  = t(i,~) and will let ti = U{t(i ,~):  ~ < L}. 

Our inductive hypotheses on Ji are that  F ( D ( N  \ Ji)) \ F(do) is infinite and 

that  i f j  E Ji \ Ji-1, then k3y > rni. 
As we define t(i,g), we will also define J(i,g) and will set 

= U { J ( i , e ) :  e < L}. 

For convenience let t ( i , -1 )  = 0 and J ( i , - 1 )  = J~-l. 

Suppose we have chosen t ( i , f -  1) and J ( i , f -  1) such that  

F ( D ( N  \ J(i, f - 1))) \ F(do) is infinite. Let n = ne and n' = n). 
First we simply try to get into Yn. That is, choose, if possible, J~(i,f) D 

J ( i , f -  1) such that  J ' ( i , e ) e m a ~ ( t ( i , e -  1)) C J ( i , e -  1), (e, D(J'(i ,e))) ~ yn,, 
and F ( D ( N  \ J ' ( i , f ) ) )  \ F(do) is infinite. If there is no such J'(i,e), then let 

J'(i, e) = J(i, e - 1). 

Next we try to get into yn with infinite growth. That is, choose, if possible, 

an x c dl \ max(t(/, ~ - 1)) such that  

F(ee U t ( i , g -  1 ) U D ( J ' ( i , e ) ) U x ) \ F ( D ( J ' ( i , g -  1))) 

is infinite and (c, do U ee U 

If such an x exists, call 

such that  there is a k3e, < 

t(i, e - 1) U D(J(i ,  f - 1)) U x} e Yn. 

this case one, and choose some large enough j~ E x 

j '  such that  6' ~ J'(i, 6) and 

F(ee U t(i, f - 1) U D(S( i ,  6)) U x) \ F(D(J ' ( i ,  6))) 

contains some element of F ( c ) n  [mqk3e,). We define J(i , i )  = J'(i,g), and 

t(i, 6) = t(i, g - 1) U (x n j + 1). Note that  6' will not be in J~. 

On the other hand, if no such an x exists, then choose J(g, i) D J'(g, i) such 

that  each of 

F(ee U t(i,e - 1) U D(J(i , f ) ))  \ F(D(J'( i ,e)))  

and 

F ( D ( N  \ J(i, 6))) 

are infinite. Again choose an ~' ~ J'(i,g) so that  k3,, > max(t(i ,g - 1)), and 

ensure that  J(i,~) n g ' +  1 equals J'(i,g) Ng'. Also ensure that  dl N [k3,,, k3~,+3) 

is not empty and let t(i, ~) = t(i, ~ - 1) U (dl N [k3,,, k3~,+3)). 
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Let mi+l = kan be chosen so that  3n ~ Ji = U{J(i,g) : / < L} and ti = 

U{t(i,g) : g < L} C [mi,mi+l). 
Let J~o = Ui Ji and note that  by construction D(J~) N mi+l = O(Ji) n mi+l. 

For each infinite I C w, set ei = U(ti : i E I} C dl. We have found our 

uncountable family since we will show that  each clopen set e~ meets gb~ [b*]. 

To show this, it suffices to show that  F(ei) is infinite. Since F(ei) contains 

F(D(J~) Uei) \F(D(J~))  mod finite, it suffices to show this latter set is infinite. 

Since (c,D(J~)Uei} E X, there is an n such that  (c,D(J~)Uei} e Yn. There 

is also an n '  such that  (c, D(J,~)) C Yn'. Let i E I be any integer greater than 

both n and n'. We will show that  F(D(J~) U ei) \ F(D(J~)) is not contained 

in i. 

Set d = D(J~) U ei and fix / such that  at stage i in the construction of the 

m~'s, e~ = d n  mi and n g =  n, and n~ = n'. We consider the properties of t(i,/). 
Let Y = D(J'(i,/)).  Since (c, D(J~)} is in Yn', it follows that  we were able to 

ensure that  (c, D(J'(i,/))} = (c, Y} is in Yn'. 

Recall that  there was an g' such that  mi < k3~, < mi+l and that  the maximum 

of t(i,/) was greater than k3e,. If J(i, /)  \ J'(i , /)  was infinite, then we know 

F(ee U t(i, g -  1) U D( J(i,/))) \ F(Y)  is infinite. Therefore F(d) \ F(Y)  is infinite 

because d D e e U t ( i , / -  1) U D ( J ( i , / ) ) .  If we set ~ = d \ m a x ( t ( / , / - 1 ) ) ,  

then 2 would be a witness to the fact that  we should have been in case one 

when defining t(i,/). Therefore, in fact, J(i, /)  does equal J'(i,/) and at stage 

/ we were able to find some x as in case one. In addition, t(i,/) was defined as 

t ( i , / -  1) U (x n j + 1) for some j �9 x \ kay,. 

Since e~ =- d n mi and i �9 I,  we have that  

d n k3g, = (eg U t ( i , / -  1) U D(J'(i , /)) U x) N k3~,. 

That  is, if we let dx = e~ U t(i, g - 1) U D(J'(i , /)) U x, then (c, d~) �9 Yn and 

d~ Cl k3e, = d N k3g,. 

Now also (c, d / �9 Yn, so there is a pair (a, d / �9 ]In such that  5N k3e, = cA k3~,, 

dN k3~, = d n k3~,, F(a) n k3~, = F(c) n k3e,, and F(aT) N k3e, = F(d) n k3~,. In 

addition, if we let 5 �9 Wl such that  e C a~, we have that  a~ Cl a~ C k3g,+l. 

Further, recall that  (c U F(c)) N [k3e,, k3~,+~) is empty. Observe also that  Y N k3e, 

is equal to D(J~) Cl k3~,. 
Each of the following are straightforward consequences: 

(1) c c a ~  a n d ~ C a a a n d a 7  ~(~. 

(2) c Cl F(~) and ~ gl F(c) are empty: because c n F(~) C c n (F(e) N a~) 

C cA (F(~) f"l k3~,+1) C cA F(c), and similarly, ~f3 F(c) C ~r3 F(c) r3 kae, 

c c n F(c) .  
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(3) c M d = ~ M d: because each of c M d and ~ M d are equal to d M k3l,. 

Therefore, the only reason that  {(c, d), (~, d)} is not in Ko is that  F(c) MF(d) 

must be equal to F(~) M F(d). The same is true with dx in place of d, hence 

F(c) N F(c/) must be equal to F(g) M F(dx). By the choice of x, there is some 

integer m' �9 F(c) M [mi, k3~,) N F(dx) \ F(Y),  and therefore m' �9 F(~) M F(d). 

This then means that  m' �9 F(d). 

By the same reasoning, there is a pair (c ~, d ~) �9 Yn' such that  c ~ M k3~, 

= c M k3e,, d' M k3~, = D(Jw) M k3~,, F(c') M k3~, = F(c) f3 k3~,, and F(d') N k3t, 
= F(D(J~))  M k3~,. In addition, if we let a '  �9 wl such that  c' C an,, we 

have that  a~, M aa C k3~,+l. Further, recall that  (c U F(c)) M [k3~,, k3~,+1) is 

empty. Repeating the argument above with (c, D(J~)) and (c',d') in place 

of (c,d) and (~,d) respectively, we have that  F(D(J~))M k3~, is equal to 

F(d') M k3~,. Furthermore, F(Y)  ~ k3~, will also equal F(d') M k3~, because 

Y M k3~, = D(J~) N k3~,. Since m' �9 F(c) N F(c') \ F(Y),  it follows that  

m' q~ F(D(J~)). 

This shows that  m' �9 F(d) \ F(D(J~)) and completes the proof. I 

COROLLARY 18 (OCA + MA): For each A c N such that A* M Z ~ O, there 

is a c E J~ such that c C A and c* C Z. 

Proof." Let A C N and assume that  A* M Z r 0. Since f is irreducible on Z, 

f[A* M Z] has interior in K.  Let W be a non-empty open subset of f[A* N Z]. 
Assume we find a set b C N such that  fib*] C W and f-l(f[b*]) contains 

a* for some a E J .  By Proposition 14, there is c C [a] ~ such that  c* c Z and 

f[c*] M f[Z \ c*] is empty. Since f[c*] C f[A* n Z], it follows that  c* C A*, or by 

removing finitely many integers, c C A as required. The remainder of the proof 

is to show there is such a set b. 

Assume there is some b C N such that  b* M Z is empty, and f[b*] C W has 

interior. Since b* M Z is empty and f[Z] = K,  it follows that  f F b* is one to 

one. By Lemma 11, this set b has the property that  f-l(f[b*]) contains a* for 

some a E J .  

Now, by Lemma 15, we may fix an uncountable family {Ua : a E wl} of 

pairwise disjoint open subsets of W. By Lemma 9, we may choose, for each 

a, some infinite ca such that  c* M Z is empty and f[c*~] is a subset of Ua. By 

the previous paragraph, we may assume that  f[c~] is nowhere dense in K for 

each a E wl. For each a, fix an aa C N \ ca such that  f[a*] is a subset of Ua 

and meets f[c*~]. By Proposition 16 and with re-indexing, we may assume that  

{a~ : a E wl} is tree-like. 
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For each a let wa �9 f[a*~] N f[ca]. Since I is two to one, 

wa ~ f[(N \ (ca U ca))*]. 

Let Wa c Ua be an open set neighborhood of wa which is disjoint from 

f[(N \ (ca U ca))*]. Since f[c*] is nowhere dense, Wa \ f[c*] is non-empty 

so there is an infinite ba C aa U ca such that  f[b*] c Wa \ f[c*]. Clearly 

ba is also almost disjoint from ca, so we may choose it to be contained in ca. 

By Lemma 10, ensure that  f [ b; is one to one. We have that  for each a, 

f[b*] Mf[(N\aa)*] is empty. Now apply Lemma 17 and let b = ba be chosen so 

that  gb[b*] has interior. By Lemma 12, b* U gb[b*] contains a* for some a �9 J .  

Since f[b*] = f[gb[b*]], it follows that  a* C f-l(f[b*]) as required. I 

LEMMA 19 (OCA + MA): If f is not locally one to one, then there is a point x 
such that for every countable family {An : n �9 o J} c x, there is an a �9 J such 
that a is almost contained in each An. 

Proos Since f is not locally one to one, there is a pair {x, x t} in N* such that  

f (x)  = f(x')  and neither is in a* for any a E J .  Since f[Z] = K,  we may 

assume that  x E Z. This is our choice for the point x. 

Assume that  {An : n E w} C x and, by possibly shrinking, we may assume 

that  A0 ~ x t and A~+I C A~ for each n. Let B be any member of x which is 

contained in A0. We check that  f[B*] \ f[(N \ A0)*] is non-empty. If f[B*] was 

contained in f[(N \ A0)*], then f F B* would be one to one. By Proposition 

13, we may assume that  either f[B*] is clopen or is nowhere dense. By Lemma 

11, f[B*] cannot be clopen, since f (x)  is not in f[a*] for any a �9 ft.  However, 

since x �9 Z, f[B* M Z] has interior and so cannot be nowhere dense. 

Next we show that  f[Z M B*] \ f [ ( g  \ A0)*] is also non-empty. We have that 

f (x)  ~ f[(Ao \ B)*] since x �9 B* and x' ~ A~. Fix any B1 �9 x with B1 C B 

such that  fiBS] M f[(A0 \ B)*] is empty. By the previous paragraph, there is a 

y �9 B~ such that  f(y) ~ f[(Y\Ao)*], and there is a z �9 Z such that  f(z) = f(y) 
and which is not in f[(N \ A0)*] t2 f[(A0 \ B)*]. We check that  z �9 B* M Z. 

Clearly z ~ (N \ A0)* U (A0 \ B)*, hence z must be in B*. 

We recursively construct a sequence of infinite sets Bn �9 x and bn C Bn so 

that  

(1) Sn+ 1 C An+l I"1Bn \ bn, 
(2) f[B~+l] A (fib*] U f[(Ao \ B,~)*]) is empty, 

(3) b~ �9 ,7', and 

(4) fibS] g~ f[(N \ Ao)*] is empty. 
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Let Bo C Ao be any member o f x .  Since f [ Z N B ~ ] \ f [ ( N \ A o ) * ]  is not 

empty, there is some Co E [Bo] ~ such that  C~ N (Z N B~) is not empty and 

f[C~] n I[(N \ Ao)*] is empty. By Corollary 18, there is an infinite bo C Co such 

that  bo E J ' .  Clearly bo ~ x, and since x' ~ b~, f(x) is not in f[b~]. We can 

choose B1 E x so that  B1 C Bo fl At \ bo and so that  fiBS] is disjoint from each 

of f[b~] and f[(Ao \ B0)*]. The induction proceeds for each n in the same way. 

By possibly shrinking each bn we can assume that  f [ b* is one to one, and 

we can choose Cn so that bn U Cn C `7. Since f[b*] n f[b*] is empty for all 

n < m, and f[b*] = f[c*] for all n, we can assume that  (ha U ca) is disjoint from 

(bin U Cm) for n < m. Recall that,  by Lemma 4, f[b*] is clopen for any b which 

is contained in bn for any n. 

For each n, let {b(n,a) : a E w~} be an almost disjoint family of infinite 

subsets of bn. Inductively define an almost disjoint family {a~ : ~ _< a < Wl} of 

subsets of Un bn so that  aan(bnUcn) is almost equal to b(n, a) for each n. Apply 

o U a~ so that  there is an uncountable Proposition 16, to find a partit ion as as a s 

I C Wl \ W such that  each of the families {a ~ : a E I} and {a~ : a G I} are 

0 1 will meet infinitely many tree-like. For each a E I,  at least one of a s or a~ 

of the b,'s. Therefore, by re-indexing, we can assume we have an uncountable 

tree-like family {as : w _< a < Wl} such that  each as  meets infinitely many of 

the bn's in an infinite set. 

CLAIM 1: There is some b C Unbn such that f r b* is one to one, 
fib*] n f[(N \ Ao)*] is empty, b N bn is finite for each n, and fib*] has inte- 
rior. 

To prove the Claim, assume first there is some ch w _~ c~ < wl, such that  

f [ ( N  \ as)*] contains f[a~]. Therefore f [ a* is one to one. By Lemma 13, 

there is a partit ion do U dl of as so that  f[d~] is nowhere dense and f[d~] is 

clopen. Again note that  do is contained in some member f f  by Lemma 11. 

By the assumption on the family {bn : n C w}, we must have that  dl N bn is 

finite for all n. Let y be any point in Un(d0 n bn)* \ Un(do n bn)*. Notice that  

f[(do N bn)*] C f[c~] for each n, hence there is a point y' E On c* \ Un c~'~ such 

that  f(y') = f(y). Since Un bn C (Un bn)* and Un C* C (Un Cn)*, y ~ y'. Also, 

fib*] =- f[Cn] is disjoint from f[(N \ do)*], hence each of Un b* and Un C* are 

contained in A~. We have shown then that  f(y) is not in f[(N \ Ao)*] since f 

is two to one. Let Y E y be chosen so that  f[Y*] n f [ (g  \ A0)*] is empty. Since 

YN (do Nbn) is infinite for infinitely many n, there is an infinite b C YNdo such 

that  b N bn is finite for all n. Since b c do and do E ,7', we have that  f[b*] is 

clopen by Lemma 4. This proves the Claim in this case. 
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Now we assume that,  for each a >_ w, there is some infinite ba C aa such 

that  fib*a] is disjoint from f[(N \ ha)*]. Clearly f[b*] N f[(N \ A0)*] is therefore 

empty. It also follows that  ba is almost disjoint from each bn since cn C N \ a~. 

By Lemma 17, there is some a _> w such that  f[b*] has interior. This proves 

the claim. 

We can now complete the proof of the Lemma. Let b C Un bn be as in the 

Claim. By Lemma 11, there is some a �9 f l  such that  a* C f-l(f[b*]). Clearly 

f[a*] C f[b*], hence f[a*] N f[(N \ A0)*] is empty. It follows that  a* C A~. 

Let n > 0, and notice that  f[a*] C f[b*] C f[Um>nb*] C f [B*+l  ]. Since 

f[B*+l Af[(Ao\Bn)*] is empty, we have that  fie*] is disjoint from f[(N\An)*]. 
Therefore it follows that  a* C A*. This completes the proof of the Lemma. 
| 

4. L o c a l l y  one  to  one  

In this section we prove Lemma 23 in a (slightly) more general setting than 

we have developed in the paper and prove the main theorem, Theorem 25, as 

a simple consequence. The approach is almost a routine application of OCA 

except it is made more complicated because we must first add a Cohen real. 

Definition 20: A family y is a -cof ina l  in an ultrafilter x if for each countable 

family {An : n C w} C x, there is an a E Y such that  a* C A* for all n. 

Definition 21: A family {(ca, da) : a E Wl} is a Hausdorff-Luzin family of pairs 

if for each a < ~ < wl, ca N da is empty and (ca N d~) U (cz N da) is not empty. 

PROPOSITION 22: Suppose that {(c,~, da) : a E •1} is a Hausdorff-Luzin family 
of pairs of subsets of N. Then U{c~:  c~ �9 wl} and U{d*:  c~ �9 Wl} do not have 

disjoint closures in N*. 

Proof: Assume, for a contradiction, that  the two sets do have disjoint closures. 

It follows then that  there is a Y C N such that  e* C Y* and Y* N d~ = 0 for all 

a.  Furthermore, there is an integer m and an uncountable set I C Wl such that  

c a \ m C Y a n d Y ~ d a c m f o r a l l a E I .  Fix a n y a < / 3 ,  b o t h i n I ,  s o t h a t  

ca N m = cz N m and d~ N m = d~ N m. Since ca n d~ is empty, it follows that  

(caNm)N(d~Am) is empty. Also, (ca\m) C Y and d~ C (N \Y ) ,  hence caNd~ 
is empty. By the same reasoning it follows that  c~ N da is empty, contradicting 

that  the family of pairs was assumed to be Hausdorff-Luzin. | 
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LEMMA 23: Assume that Z is a family of infinite subsets of N and that for 

each a �9 Z there is a one to one function ha from a cofinite subset of a onto 

some cofinite subset of a such that ha(n) ~ n for all n �9 a. I f  Z is a-cofinal in 

x for some x �9 N*, then there is a proper poset P such that i f  G is P-generic, 

then in V[G] there is a partition {Co, C1, C2} of N and an uncountable family 

{ca :  O~ �9 ~dl} C Z such that {(cs,da)  : a �9 wl} forms a Hausdorff-Luzin family 

of pairs where, for each a �9 Wl, 

c s = C 2 N h a ~ ( a s n C o )  and d s = C 2 n h a ~ ( a a n C 1 ) .  

We defer the proof of Lemma 23 until after Theorem 25. The following 

corollary is a routine application of PFA proven by selecting the appropriate 

family of Wl many P-names and dense sets for a P-filter to meet. We use the 

convention that  ~) is the P-name for the ground model set v. 

COROLLARY 24 (PFA): Let Z be a family of  infinite subsets of N and for each 

a �9 Z let ha be given which is a one to one function from a cofinite subset of 

a onto a cofinite subset of a such that  ha(n) r n for ali n �9 a. I f  there is an 

x �9 N* such that Z is a-cofinal in x, then there is a partition {Co, C1,C2} of 

N and an uncountable family { a s :  a �9 COl} C Z such that {(cs ,ds)  : a �9 a;1} 

forms a Hausdorff-Luzin family of pairs where, for each a �9 col, 

c s = C 2 N h a ~ ( a s N C o )  and d s - - C 2 N h a ~ ( a s n C 1 ) .  

Proof'. Let P be the proper poset given by Lemma 23. Let Co, C1,C2, and 

{as : a �9 wl} be the family of P-names so that  for some P0 �9 P,  P0 forces 

"{Co,C1,C2} is a partit ion of N, {as : a �9 Wl} is contained in ~" and 

{(ca, da) : a �9 Wl} forms a Hausdorff-Luzin family of pairs where, for each 

O~ � 9  

c ~ = C 2 N h a ~ ( a s N C o )  and d s = C 2 n h a ~ ( a s N C 1 ) " .  

By replacing P with the poset of all p �9 P such that  p < P0, we may assume 

that  P0 is the largest element of P.  For each a, let ds and da also denote the 

P-names for ca and ds respectively. For each a �9 Wl, let 

D ,  = {p e P :  (3ca C Z)p Ik/~a = ~a}. 

For each n �9 N, let E,~ = {p E P :  (3i �9 3)(p Ik ~ �9 Ci)}. For each a </~ < ~dl, 

let Da,~ be 

{ p e P :  (3k �9 g , i  �9 2)(p Ik k e C2nitaNaz,  ha~(k) e C~, and ha,(k)  �9 C l - i ) } .  
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Note that for each p E D~,Z, there is a k such that  p Ik k E (ds M d~) U ( d a n  dZ). 

It is routine to check that  all of the above sets are dense in P,  and that  if G 

is a P-filter which meets each of them, then Co, C1, C2 and {as : a E wl} is our 

desired family where for each i E 3, Ci = {n : (3p E G M En)p If- ~ E Ci} and, 

for each a E wl, as is the unique element of 27 such that there is a p E G M Da 

with p Ik &s = as. 1 

THEOREM 25 (PFA): The function f is locally one to one. 

Proo~ By Proposition 4 and Lemma 19, the hypotheses of Corollary 24 are 

satisfied by letting 27 be f f  from Definition 2 and the family of functions from 

Proposition 4. Let Co, C1,C2 and {ha : a E wl}, {(ca,ds)  : a E wl} be as in 

Corollary 24. By Proposition 22, there is a point w E N* such that  

U * n  U ds c . W E Co~ 

c~Ewl SEWl 

Let a E Wl, and observe that  by Proposition 4, 

f[(as rh Co)*] = f[(ha~(as n Co))*] and f[(as M C,)*] = f[(ha~(as n C1))*]. 

Therefore f[C~] D f [ U a ~  c*] and f[C~] D f [ U s c ~  d*]. It follows that  f (w) 
has a preimage in each of C~, C~ and C~'. This contradicts that  f is two to one. 

I 

Proof of Lemma 23: The remainder of the section is a proof of Lemma 23. 

Assume that  Z is a family of infinite subsets of N and that  for each a E 27 there 

is a one to one function ha from a cofinite subset of a onto a cofinite subset of 

a such that  ha(n) ~ n for all n E a. Also assume that  27 is a-cofinal in x for 

some x E N*. By choosing one representative in each equivalence class in 27 

mod finite, we may assume that  if a, a ~ are distinct members of 27, then a and 

a' are not equal mod finite. 

LEMMA 2 6 : I f 2 7  is covered by a countable family {Zn : n E w}, then Zn is 

a-cofinal in x for some n. 

Proof." For each n, let .An be a countable subset of x such that  if Zn is not 

a-cofinal in x, then Zn has no member which is contained rood finite in each 

member of An. Then .4 = U n ~  .An is a countable subset of x and there is some 

a E 27 which is contained rood finite in each member of .A. Since there is some 

n such that  a E Zn, it follows that  Zn is a-cofinal in x. I 
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PROPOSITION 27: I f  H is a function from N to N and H(n) # n for all n, then 

there is a set X E x such that H[X] M X is empty. 

Proo~ The three set lemma [Wa174, 6.25], implies there is a partit ion 

Xo, X1, X2 of N such that  H[Xi] M Xi  is empty for each i. I 

LEMMA 2 8 : I [ 3 2  C Z is a-cofinal in x and m E w, then there are a,b E 32 and 

k > m such that h~l(k)  ~ hbl(k)  and both are greater than m. 

Proof'. Let X be any member of x such that  N \ X is infinite. Let Y denote 

the set of integers k E X so that  k is in the domain and range of hak for some 

ak E 32. Since 3; is a-cofinal in x, Y meets every member of x in an infinite set. 

Since x is an ultrafilter, Y E x. For each k E Y, define H(k)  = ha l (k ) .  Note 

that  H(k)  ~ k for all k E Y. Extend H to N \ Y arbitrarily to a permutation 

on N so that  H(n) # n for all n. By Proposition 27, there is an X1 E x so 

that  H[X1]NX1  is empty. Let a E 32 such that  a C* Y N X 1  and choose 

k E Y M X 1 M a \  (ha[m] U h~-X[m] UH[m] UH-I [m]) .  Note that  since k E YMX1,  

hal(k)  ~ H(k)  = h j l ( k ) .  It follows that  if we let b = ak then we have our 

desired pair a, b E 32. I 

The standard countable poset for adding a Cohen real has many forcing equiv- 

alent forms. The form most useful for us is the set, <~3, of all functions from 

some integer into 3 = {0, 1, 2}. This poset is ordered by extension. 

COROLLARY 29: I f  G C <~3 is a generic filter and if Z is covered, in V[G], by 

a countable family {32n : n E w}, then there are p E G, n E w, a, b E 32~ and 

k E a M b such that p(k) = 2, p(h~l(k))  = O, and P(hbl(k))  = 1. 

Proo[: Let {Yn : n E w} be <~3-names and assume that  some p is any member 

of G which forces that  Z is covered by Une~ Yn. Let p' < p be arbitrary. For 

each q < p' and integer n, let Yq,n be the set of a E Z such that  q IF ~ E Yn. 

Since pt < p, we have that  Uq<p, Une~ Yq,n covers Z. By Lemma 26, there is a 

q < / and an n such that  Yq,n is a-cofinal in x. Let rn be large enough so that  

the domain of q is contained in rn. By Lemma 28, there is a pair a, b E Yq,n 

and k E a M b \ m such that  hal(k)  ~ hbl(k)  and both are greater than m. 

We can extend q to a condition q' E <~3 so that  q'(k) = 2, q'(h~l(k))  = 1 and 

q'(hbl(k))  = 2. Since p' was an arbitary element below p, the set of conditions 

with this property of q' is dense b e l o w / ,  hence there will be such a qt E G. 

I 
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For the remainder of the proof we work in the extension V[G] for a generic 

filter G c <~3. We have our desired partition {Co, C1,C2} of N given by 

g = U G. That  is, g is a function from N onto 3, and we let C~ = g - l ( i )  for 

i E 3. We will now show that  our uncountable family {as : c~ < wl} can be 

found in a subsequent proper forcing extension. 

For each a E Z, let ca = C2 M h~(a N Co) and de = 62 n h~(a M C1). Since ha 

is one to one and Co M C1 is empty, we have that  c~ N d~ is empty for all a E 5[. 

We leave it as an exercise to verify that,  since 5[ E V and distinct members 

of 1; have infinite symmetric difference, c~ and c~, also have infinite symmetric 

difference for a r a ~ E 5[. We define a separable metric topology on the set 5[ 

by declaring [a; m] = {b E 5[ : Ca M m = Cb M m and d a N m = db n m}  to be open 

for each a E I and m E w. 

Let K0 C 5[ be the set of pairs (a,b) E 5[ such that  (c~ M db) U (da M Cb) 

is not empty. To see that  K0 is an open subset of 5[2 a s sume  that  (a, ~) is 

K0. Let k be any integer in (c~ M da) U (d~ M ca) and let m > k. Let (b, b) be 

an element of [a; m] • [~; m]. Clearly k E (Cb M d~) U (rib M c~), which shows 

that  [a; m] • [~;m] C K0. Our desired Hansdorff-Luzin family of pairs is 

{(Ca, d~) : a E Y} for any uncountable subset Y C 5[ such that  y2  \ Ay  C Ko, 

where Ay  denotes the diagonal in y2.  

We are nearly ready for a standard application of OCA; however, we must 

recall that  we are no longer in a model in which OCA holds since we have 

added a Cohen real. Instead, we use the following result which comes from the 

well-known proof that  PFA implies OCA. 

PROPOSITION 30 ([Do91, 6.2]): I f  X is a separable metric space and K0 

is an open subset of X 2, then either X is covered by a countable collection 

{Xn : n  E w} such that X2n \ A x  is disjoint from Ko for all n, or there is a proper 

poser P which introduces an uncountable set Y C X such that y2  \ A x  C Ko. 

By Proposition 30, we will finish the proof of Lemma 23, if we show that  Z 

cannot be covered by a countable union, Une~ 32n, of sets such that  322 \ Az 

is disjoint from K0 for each n. By Corollary 29, there is an n, p E G, and 

a, b E 32n and k e aMb so that  p(k) = 2, p (ha l (k ) )  --- O, and P(hbl(k) )  = 1. Let 

i = ha~(k) and j = hb~(k). It follows that  i E aMCo and j E bNC1. Therefore 

k E Ca M db. Since this means that  (a, b) E Ko M 322 \ Az ' this finishes the proof. 

I 
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